<html><head><meta http-equiv="Content-Type" content="text/html charset=iso-8859-1"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div>Dear Thomas,</div><div><br></div><div>if you look in the file mscomp.db1 you will find the description for the simple model (53):</div><div><br></div><div><div style="margin: 0px; font-size: 11px; font-family: Menlo; ">beyond phase change temperature range latent heat of material is</div><div style="margin: 0px; font-size: 11px; font-family: Menlo; ">equal to 0. In phase change temperature range latent heat is:</div><div style="margin: 0px; font-size: 11px; font-family: Menlo; ">1 - constant LHT=b</div><div style="margin: 0px; font-size: 11px; font-family: Menlo; ">2 - linear function of temperature LHT=aT+b</div><div style="margin: 0px; font-size: 11px; font-family: Menlo; ">according to this two cases can be considered:</div><div style="margin: 0px; font-size: 11px; font-family: Menlo; ">1 - latent heat is constant in temperature range (Ts-Tm),</div><div style="margin: 0px; font-size: 11px; font-family: Menlo; ">&nbsp; &nbsp; y=ax+b (a=0, b=latent heat [J/kg*K])</div><div style="margin: 0px; font-size: 11px; font-family: Menlo; ">2 - latent heat is a linear function of temperature,</div><div style="margin: 0px; font-size: 11px; font-family: Menlo; ">&nbsp; &nbsp; y=ax+b (a=latent heat [J/kg*K^2], b=latent heat [J/kg*K])</div><div style="margin: 0px; font-size: 11px; font-family: Menlo; min-height: 13px; "><br></div></div><div>According to this, your approach will likely work numerically, however, if the actual behaviour / results have anything to do with reality is a totally different question.</div><div><br></div><div>Some suggestions:</div><div>- If you are working under contract, be sure to clearly define the extremely limited information you are basing your simulations on and the possible consequences of this to your client</div><div>- if you are working scientifically, then be sure to collect more information on the PCM</div><div><br></div><div>Best</div><div>Achim</div><div><br></div><div><br></div><br><div><div>On Oct 29, 2013, at 9:57 AM, Thomas Ritter &lt;<a href="mailto:thomas.ritter@gmx.de">thomas.ritter@gmx.de</a>&gt; wrote:</div><br class="Apple-interchange-newline"><blockquote type="cite"><div><div style="font-family: Verdana;font-size: 12.0px;"><div>Dear all,</div>

<div>&nbsp;</div>

<div>i'm trying to implement a PCM by the active materials section in esp-r.</div>

<div>&nbsp;</div>

<div>Within my information about the chosen PCM, it is given only one temperature for solidfication and melting (23°C).</div>

<div>Additionaly there is value given for the latent heat (13,2 kJ/kg).</div>

<div>&nbsp;</div>

<div>In July this year a message about PCM modelling&nbsp;was answered with the possibility of a simpler model where latent heat flux is constant versus temperature.</div>

<div>&nbsp;</div>

<div>Do I have to pretend that for example the melting temp. is 22,9°C and the soldifaction temp is 23,1°C and then take for latent heat member b 13,2 kJ/kg divided by 0,2 K, while a = 0? Or is there a way to calculate with temperature for melting equal temperature for solidification?</div></div></div>

_______________________________________________<br>esp-r mailing list<br><a href="mailto:esp-r@lists.strath.ac.uk">esp-r@lists.strath.ac.uk</a><br>http://lists.strath.ac.uk/mailman/listinfo/esp-r</blockquote></div><br><div apple-content-edited="true">
<span class="Apple-style-span" style="border-collapse: separate; font-size: 12px; border-spacing: 0px; "><div><a href="mailto:achim.geissler@intergga.ch">achim.geissler@intergga.ch</a></div><div><br></div><div><br></div></span><br class="Apple-interchange-newline">

</div>
<br></body></html>