The case study further demonstrates that the new ESP-r interface can be used to better evaluate the impact of different technologies (different shading devices, different complex façades) on the thermal comfort of an enclosure and on the energy demands.

FURTHER DEVELOPMENT

Some limitations are still not solved and further analysis and studies must be done by the authors:

- Only UP or DOWN positions for the blinds are considered (e.g. the blinds cannot be positioned to cover only half of the window)
- Predetermined slat angles (no glare analysis is done to determine appropriate slat angles)
- Pre-calculation of the façade properties is needed; at the moment there are no user friendly tools for this pre-calculation.
- Further model development must be done to take into account more accurately the diffuse irradiation. A new model for daylighting calculation is available for the software Daysim. This new Dynamic Daylight Simulation (DDS) was developed as a mechanism for sharing daylight coefficient data between lighting and energy simulation programs (Laouadi et al. 2007, Bourgeois et al. 2007).
- Additional control options should be added to allow combinations of sensed conditions (e.g. temperature and irradiation) to determine the appropriate slat state.

APPENDIX

An example of the input file is shown in this section. The file is used as input for the new optics menu that was introduced in ESP-r.

The *Datatype* flag describes which input data are provided.

The complex façade (double glazing with external venetian blinds) is modelled as *three layers* (glass pane, air, glass pane). Six configurations (e.g. different slats angles) are possible for inclusion in this file.

*RI	DIDEC	TIO	N A T
· D1	DIKEC	/ I I O	AL

*types,1
*item, silver_raffstore_ISE-building in combination with
WSV_ISE_building
*datatype,Te_g_rho
*layers,3
*sets,6
Next nine lines are not used (only for documentation)
Properties of glazing:
GZG-Name: WSV_ISE_building
g0 = 0.58
tauvis0 = 0.75
udgu = 1.2

Properties of blind: ## BLD-Name: silver_raffstore_ISE-building ## rhodiff[closed] = 0.452548## taudiff[0] = 0.431566 *start set *set_type 1,#slat angle = n.a. (glazing only) *Uvalue 1.2 *Rexternal 0.0434783 *Rinternal 0.125 ## Next two lines are only used for data type 1 *diffuse_abs,#,#,# *diffuse trn,# *direct_angs,37,37 #Azimuth,Height,Te,g,rho -90.-90.0..0..0.68 -90,-85,0.,0.,0.68 0.-15.0.50821.0.57797.0.17179 0,-10,0.50921,0.5791,0.17079 0,-5,0.5098,0.57978,0.1702 0.0.0.51.0.58.0.17 0,5,0.5098,0.57978,0.1702 0,10,0.50921,0.5791,0.17079 0,15,0.50821,0.57797,0.17179 90,85,0.,0.,0.68 90,90,0.,0.,0.68 *end_set *start_set *set_type 2,#slat angle = 0.deg *Uvalue 1.2 *Rexternal 0.0434783 *Rinternal 0.125 ## Next two lines are only used for data type 1*diffuse_abs,#,#,# *diffuse_trn,# *direct_angs,37,37 *data #Azimuth,Height,Te,g,rho -90.-90.0..0..1. -90,-85,0.,0.,1. 0,-10,0.39747,0.49138,0.12755 0,-5,0.42246,0.51938,0.12546 0,0,0.4461,0.54592,0.12375 0,5,0.42161,0.51804,0.13274 0,10,0.39124,0.48359,0.14285 90,90,0.,0.,1.

*end_set *end_file